
Using Android devices within a
Jenkins Continuous Ingetration Environment

André Boddenberg
student at the Beuth University of Applied Sciences Berlin

Matr. Nr. 791997
andre@blobb.me

Abstract

Is it possible to implement Android devices
into a Continuous Integration Server like
Jenkins? So we would gain the possibility of
running Android tests on real devices and
even vendor specific Android versions
instead of emulators.

Key words

androidFarm: Jenkins slave instance which
acts like a master for all androidSlaves.

androidSlave: Android device connected to the
androidFarm via the android debug bridge.

1. Introduction

First of all, I want to point out that this
paper is about running automated Android
tests on devices managed by a Continuous
Integration1 Server like Jenkins2. So all
available solutions of running tests, e. g.
Android JUnit3, Espresso4 or Monkey5 on an
Android device via an integrated
development environment, e. g. Eclipse or
AndroidStudio are not in the scope of this
work. Secondly, I want to give a brief
overview of the possibility for testing

1Continuous Integrations means to integrate new code as much as
possible to the main branch. Another part of CI is testing code, which
ensures it's quality by running automated tests every day and publish
the results.
2 Jenkins is a build and CI Server. http://jenkins-ci.org/ (last visit: 3:49
PM, January 3, 2015 (GMT+1)
3 Unit testing for Android applications.
4 Android UI testing framework by Google, you write all events.
5 Automated UI Testing for android, it creates random events

Android applications via Jenkins. At the
moment you can use the following Plugins6:

Android Emulator Plugin7 (Christopher Orr)
AppThwack Plugin8 (Andrew Hawker)

The first Plugin provides Monkey and
Android JUnit testing on an emulator. The
Plugin itself handles all necessary steps to
setup, start and delete an emulator.
The second solution provides Appium,
Calabash, Android JUnit, Espresso,
MonkeyTalk, Robotium, Selendroid and
Monkey tests on Android devices in a
cloud. So you basically just have to upload
your apk9, which includes the tests. Or you
upload two apks, the apk under test and
the test apk and you will get back all
results.

If we already have such possibilities, why
would we want to run tests on our own
devices?

Basically, because we have them already.
If you develop Android applications you
have at least one device and most
companies have at least the main devices
on the market. Especially if you have an
own test department. Sometimes you even
must buy a vendor specific device, because

6 Plugins are installed to Jenkins to add new functionalities.
7 https://wiki.jenkins-
ci.org/display/JENKINS/Android+Emulator+Plugin (last visit: 3:49
PM, January 3, 2015 (GMT+1)
8.https://wiki.jenkins-ci.org/display/JENKINS/AppThw ack+Plugin
(last visit: 3:49 PM, January 3, 2015 (GMT+1)
9 Android application package file (apk), distributes installing an app.

http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/AppThwack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/AppThwack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin

you want to develop for their
implementations, e. g. Samsung Knox10.
Although running tests on a cloud sounds
brilliant, we don't need to buy hardware
and pay only on-demand. But running tests
on devices owned by someone else means
that your apks must be obfuscated11. In fact
you don't want to provide the possibility to
gain your source code in clear text by
decompiling your apks. But often you
obfuscate your apks right before a release.
So using AppThwack for daily testing would
imply to deal with the obfuscation every
day as well. Furthermore the pricing of
AppThwack seems quite expensive for
daily testing purposes. But it should be
used for massive device specific tests right
before a release to the Google Playstore.
Although running tests on an emulator is
reliable and well implemented for Jenkins
by Christopher Orr, it always frightens me
to run performance tests on an emulator.
Because mostly you run an x64 or x86
machine, which emulates the ARM-
Architecture. So I always ask myself which
performance are we testing right now.
Additionally it will be faster to run tests on
a real device instead of an emulator. In fact
starting an emulator can take several
minutes, if you don't use the Intel HAXM12
and the x86 emulator images, which aren't
available for every Android version.

Considering all the facts above it would be
an improvement for the Android
Continuous Integration, if we could
implement Android devices into Jenkins. So
we gain another way of testing Android
applications closer to their actual
environment without any restrictions with
our own devices.

10 “Samsung KNOX Workspace provides hardware and software
integrated security for Samsung mobile devices .” (Samsung
http://www.samsung.com/global/business/mobile/platform/mobile-
platform/knox/) (last visit: 3:49 PM, January 3, 2015 (GMT+1)
11 Obfuscation replaces all names of variables,classes,methods, etc pp
to a short term like “aab”, so it will be much harder to understand the
code after decompiling it.
12 “Intel HAXM is a hardware-assisted virtualization engine that uses
Intel Virtualization Technology to speed up Android app emulation on
a host machine.” (Intel: https://software.intel.com/en-
us/android/articles/intel-hardware-accelerated-execution-manager)
(last visit: 3:49 PM, January 3, 2015 (GMT+1)

2. Problem

Before facing the problems of
implementing an Android device into
Jenkins I want to explain a bit about Jenkins
functionality of distributed builds. Basically,
you have one Jenkins server, which is
called master and multiple machines called
slaves. The master instance handles almost
everything related to users or
administrators, e. g. user database, build-
job configuration, Winstone web server. But
the actual build-job, e. g. running a test or
building an apk will be delegated via ssh13
to a slave to ensure the accessibility of the
Jenkins master by passing the actual
workload to another machine.
The interested reader is referred to the
book “Jenkins: The Definitive Guide”14 by
John Ferguson Smart.

Unfortunately, we cannot create a Jenkins
slave on top of an Android device, because
the master instance needs to install the
slave.jar15 after connecting via ssh. This
cannot be done with android's DalvikVM16,
which cannot execute compiled Java
byteCode. At this point I want to mention
that porting the slave.jar into a slave.apk is
not considered as a good solution, because
from my point of view it would result in
massive work while losing the actual aim.
Because even if we ported the code to a
Dalvik executable, we would have to
compile every Plugin specific code to a
Dalvik Executable after installing it on the
Jenkins master, before updating the slave.

Furthermore, I figured out, while starting
Android JUnit and Monkey tests via an ssh
connection to my Nexus 5, that Google
does not provide the possibility to run tests
via shell for reasonable security reasons.
You just get the following message:

13 Secure shell is a cryptographic network protocol to access another
machine and execute shell commands.
14 http://it-ebooks.info/book/576/ ISBN: 978-1-4493-0535-2
15 Java runnable, which has to be execute after establishing the
connection to the slave via ssh in order to fully connect the slave to
Jenkins.
16 Dalvik is the process virtual machine (VM) in the Android
operating system.

http://it-ebooks.info/book/576/
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
http://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/
http://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/

“java.lang.SecurityException:
Permission Denial:
startInstrumentation ask to run as user -2
but is calling from user 0; this requires
android.permission.INTERACT_ACROSS_US
ERS_FULL”

I added this permission to the manifest, but
the error still remained. Additionally, it
turns out that we cannot use adb command
directly via an ssh connection. I was able to
start an adb17 daemon18, but no device was
listed.

So I decided to implement a slave which
acts like a master for all connected Android
devices via adb and delegates such
commands device specific, which will be
called androidFarm.

At this point I want to mention the
androidCluster of Joshua Drake, which gave
me a lot of inspiration and will be discussed
in the Related Work section.

Furthermore we have to take care that this
setup is not only capable of executing adb
commands on a specific device. It should
also block devices for build-jobs if their
already used by another build-job19, pass
an exception to Jenkins if the device is not

17 An Android debug bridge daemon communicates with your USB
connected Android device
18 Program that runs as a background process and not in the context of
an interactive user.
19 A build-job is a predefined task e. g. building a apk or run tests,
which consists of several different build-setps and can be simply started
by a user via the “build now” button.

connected to the androidFarm and ensure
that the Jenkins build-job fails if an adb
command e. g. installing an apk won't be
successful.

3. Detailed Work

In this section we will take a closer look at
a possible implementation of such setup
mentioned above. First, I want to explain
the setup I used to implement the Android
Farm to Jenkins and how the Android
specific build-jobs are handled. Afterwards I
will discuss how those build-jobs are
realized via shell scripts. Finally, I will
evaluate my tests with three different kinds
of tests (Monkey, Espresso, Android JUnit)
on rooted20 and non-rooted devices
connected via adb to the androidFarm.

3.1 androidFarm setup

The hardware of the androidFarm slave is a
Raspberry Pi (Model A, B+, Pi 2) running
Rasbian (Debian Wheezy build 2014-09-
09). To connect multiple Android devices I
used the D-Link (DUB-H7) USB hub as
recommended by Joshua Drake.

In fact that a ssh daemon and a Java
runtime-environment is already installed
on Rasbian, we can directly connect to the
RaspberryPi from the Jenkins master via
ssh and establish the connection as a
Jenkins slave by copying and running the
slave.jar. In order to run adb commands on
an ARM-Architecture I needed to cross-
compile the adb, this will be explained later
in the related work section.
Even so any adb command will start a
server, if none is running. I had to start the
adb server as root to see devices. So I
wrote a script to start such server, which
will be executed automatically after
booting.

I use environment variables of the Android
slave to provide user-friendly names for
the connected devices instead of their

20 If you root an Android device you gain super user rights from your
normal user context. This isn't provided for security reasons by
Google.

serial number. Additionally, I define a
variable called androidFARM, which
references to the directory where all the
necessary files, executables and shell
scripts are based.

3.2 Used Android devices

I used 7 devices for the evaluation.

Samsung Galaxy Y(oung) - rooted
Samsung S3
Samsung Note 2
Samsung S4
Nexus 5
Nexus 7 (2012)
Nexus 10

3.3 Build-job setup

First of all the build-job has to be executed
on the androidFarm via the “Restrict where
this project can be run” option.
The user-friendly name of the specific
device has to be passed as a parameter to
the build-job in order to bind it.
I copied all necessary apks from a previous
ran build-job via the Copy Artifact Plugin21.
Finally you have to create a “execute shell”
build-step22 and copy the androidFarm
bash script. Alternatively you can call the
script and pass the “user friendly device”
name.

3.4 androidFarm bash script

#!/bin/bash
1) eval dvc='$'$device

2)adb=$($androidFARM/androidFarm.sh
 "$dvc" $androidFARM)

3)if ["$adb" = "adb -s $dvc"]; then

 # run adb commands directly
4) $adb shell input keyevent 26

 # to pass script as parameter

21 https://wiki.jenkins-ci.org/display/JENKINS/Copy+Artifact+Plugin
(last visit: 3:49 PM, January 3, 2015 (GMT+1)
22 A build-step is part of a build-job, which provides predefined
functionalities. So there are different build-steps available e. g. “invoke
ant”, “publish JUnit report”.

5) bash -ex $script $adb

6) rmdir $androidFARM/androidPID/$dvc

else
 echo $adb

exit 1
fi

Let's have a closer look to the shell script
of the Jenkins execute shell build-step.
In line 1 we evaluate the user-friendly
name of the specific device via the
environment variables of the Android slave
to get its serial.
In line 3 we compare the output of the
androidFarm.sh script, which will be
discussed soon with the expected output. If
they are equal we can choose between
writing adb commands directly inside the
Jenkins shell via “$adb” (line 4) or
reference to a adb shell script (line 5).
After executing the desired commands the
directory, used for something like a PID will
be deleted (line 6) and the shell
terminates.
Othoerwise the variable adb will be echoed
to log the error and the shell terminates
with a exit code.

3.5 androidFarm shell script

Before describing the androidFarm.sh
script I want to explain the prerequisites to
execute adb commands on a specific
Android device. To do so you specify the -s
flag with the device's serial as a parameter
when executing adb command.

adb -s <serial> <some command>

So we basically just have to wrap the
underlined part of the above line and save
it into the adb variable.

#!/bin/bash
######### functions #######

connected(){

https://wiki.jenkins-ci.org/display/JENKINS/Copy+Artifact+Plugin

 OUTPUT=`adb devices | grep $1`

 If [${#OUTPUT} -lt 1];
 then
 echo "false"
 else
 echo "true"
 fi
}
available() {

cd $2/androidPID
OUTPUT=`ls | grep $1`

if [${#OUTPUT} -lt 1];
then

mkdir $1
echo "true"

else
echo "false"

fi
cd ..
}
######### script ##########

dvc=$1
LEN=$(echo ${#dvc})

1) if [$LEN -lt 6]; then
 echo ”serial seems to short”
 exit 1
else

 deviceConnected=$(connected $dvc)
2) if [$deviceConnected = "false"];
then
 echo "not connected”

 exit 1
 else

deviceAvailable=$(available $dvc $2)
3) if [$deviceAvailable = "false"];
then
 echo "device already used”
 exit 1
 else
 echo adb -s $1
 fi
 fi
fi

At 1 we check if a corresponding serial of
user-friendly name of the device is
available by the environment variables of
the androidSlave by evaluating the length
of the string.
At 2 we check if the Android device is
connected to the androidFarm by using the
function connected().
Afterwards at 3 we check whether the
desired device is free to use, by checking if
a directory named after the serial of the
device exists already in the androidPID
directory. If so we create a directory name
after the serial to block this device for
other build-jobs.
When everything is fine we echo “adb -s
<serial>” back to the Jenkins shell script.
In case the desired device has no reference
to its serial, is not connected or not
available a corresponding error message
will be echoed to pass some kind of log to
Jenkins.

I want to point out that the handling of the
PIDs23 could be even handled simply in a
file, but for the rough test implementation I
decided to keep it as simple as possible.

It should be clear now why the shell script
inside the Jenkins build-step deletes a
directory before terminating if the desired
Android device was free to use and not
outside the if case. Because we would
cause an error in fact of making a device
available, which haven't been available for
us, in fact it was and probably still is used.
This would allow another build-job to bind a
already binded device.

3.6 Evaluating the test setup

I used three kinds of test. A simple Monkey,
Android JUnit and an Espresso UI test. I
want to mention that the scope of this work
is not writing perfect tests, the interested
reader is referred to the Android Testing
Fundamentals.24 It's more about being able

23 Process identification number
24 http://developer.android.com/tools/testing/testing_android.html
(last visit: 3:49 PM, January 3, 2015 (GMT+1)

http://developer.android.com/tools/testing/testing_android.html

to run them on Android devices integrated
into Jenkins. Here's how I started the test
via adb inside the “execute shell”
buildstep.

Android Junit and Espresso UI tests:

$adb shell am instrument -w
<testpackage>/<testRunner>

Pulling the Zutubi25 result XML26 file:

$adb pull /data/data/<package under
test>/files/junit-report.xml

Monkey:

$adb sehll monkey -p <package>
-v <amount of events>

Alternatively you can take a look at the adb
shell scripts, which are called from the
Jenkins shell in the Related work section.

After running a couple of tests with this
setup, I positively figured out that the
device handling works quite nice. Although
I could only use 6 devices simultaneously
connected to a Pi 2 or B+ (2 on A). I was
able to start all described tests and get the
directly echoed results. Those results
actually provide all necessary information
but not in a Jenkins-friendly XML valid way.
To do so you should use the Zutubi Android
testrunner to provide a XML valid report to
Jenkins. First I was only able to pull the
zutubi result.xml from the androidSlave to
the androidFarm, if the device was rooted.
In order to pull them from a non-rooted
device I needed to add the
“WRITE_EXTERNAL_STORAGE” permission
to the manifest, so I could save the result
via the -e flag of the Zutubi runner on the
local storage, which then can be pulled.

Furthermore a build-job directly fails if a
specific device was used already, which is
good but needs improvement. And I have

25 http://zutubi.com/source/projects/android-junit-report/ (last visit:
3:49 PM, January 3, 2015 (GMT+1)
26 Extensible Markup Language http://www.w3.org/XML/ (last visit:
3:49 PM, January 3, 2015 (GMT+1)

to come up with a “unlockScreen” script,
because all UI test ran, but such test are
useless if they run on the lockscreen. The
build-job should wait a defined time-out
and try periodically to acquire the desired
device. Another solution which will
implement such functionality will be
discussed in the Additional Work section.

Finally the build-job doesn't terminate with
an exit code, if an adb command wasn't
successful.

4. Related Work

In this section I want to discuss projects of
others, which helped and inspired me while
writing this paper. Additionally, I will
discuss the adb shell script used for
evaluating more detailed.

4.1 androidCluster

The android-cluster-toolkit project by
Joshua Drake can be found on github27. It
handles adb and fastboot commands “on
single devices, a selected subset, or all
connected devices at once”(github). It's
written in Ruby and only needs to access
the adb and fastboot commands installed
explicitly by the user. To get more details
about his work and why he build such an
androidCluster view his presentation28.

Although I didn't want to use his toolkit
directly in fact of ruby, which I'm not
familiar with. I adopt the “user-friendly
device name” feature and I followed his
recommendation of using the D-Link USB
hub. Additionally it was great to try this
toolkit in order to see that handling
multiple devices connected to one host is
possible.

4.2 adb and fastboot on RaspberryPi

27 https://github.com/jduck/android-cluster-toolkit (last visit: 3:49
PM, January 3, 2015 (GMT+1)
28.https://www.blackhat.com/docs/us-14/materials/us-14-Drake-
Researching-android-Device-Security-With-The-Help-Of-A-Droid-
Army.pdf (last visit: 3:49 PM, January 3, 2015 (GMT+1)

https://www.blackhat.com/docs/us-14/materials/us-14-Drake-Researching-Android-Device-Security-With-The-Help-Of-A-Droid-Army.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Drake-Researching-Android-Device-Security-With-The-Help-Of-A-Droid-Army.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Drake-Researching-Android-Device-Security-With-The-Help-Of-A-Droid-Army.pdf
https://github.com/jduck/android-cluster-toolkit
http://www.w3.org/XML/
http://zutubi.com/source/projects/android-junit-report/

I needed to cross-compile the adb from
source to be able to run adb commands on
the ARM-Architecture of the RaspberryPi.
I basically just followed the steps of the
guide29 by Andres Rudolf. First I wanted to
use some already cross-compiled files,
which can be found in the xda-
developers30 forum. But those executables
were too old, so they couldn't handle the
RSA-handshake of an adb connection on
devices running Android 4.2.x.

4.3 adb shell scripts

A first try to write an adb shell script, which
installs all necessary apks, start the test
itself, copy back the report and even
uninstall the previously installed apks
shows that the amount of passed
parameters increases a lot. The following
parameters have to be passed:

– $1 workspace of build-job
– $2 adb with wrapped serial
– $3 fastboot with wrapped serial
– $4 apk under test
– $5 test apk
– $6 package name of apk under test
– $7 package name of test apk

The actual shell script used for evaluating:

cd $1

$2 install $4
$2 install $5

start test
$2 shell am instrument -w $7/com.
zutubi.android.junitreport.
JUnitReportTestRunner

copy report
$2 pull /data/data/$6/files/junit-

report.xml

$2 uninstall $4

29 http://android.serverbox.ch/?p=1217 (last visit: 3:49 PM, January
3, 2015 (GMT+1)
30 http://www.xda-developers.com/
(last visit: 3:49 PM, January 3, 2015 (GMT+1)

$2 uninstall $5

Everything worked out except the error
handling of adb commands. This couldn't
be achieved by simply evaluting the $?
variable after executing an adb command.
So we need wrapper commands for all
necessary adb commands.

5. Resume

There is a way to access Android devices
from Jenkins and run tests on them. It's
even possible by using a low-cost
RaspberryPi as a host for the Android
devices, some shell scripts and a quite
manually setup of Jenkins configurations.
Basically we could use such setup for daily
testing. But there are still some issues to
be resolved.

The handling of the androidSlave was
handy for the test evaluation, but should
be improved. Especially the fact that a
build-job fails, if a device is already used or
not connected instead of waiting for a
timeout before doing so.

Additionally, I need to implement a
wrapper for all adb commands, e. g.
installing an apk to be able to verify if they
succeeded or mark the build-job's result
correspondingly otherwise.

Especially the issue mentioned first could
be resolved by creating a slave instance for
each Android device connected to the
androidFarm, which results in multiple
connection. But then the build-job queue
for each slave, in our case an Android
device would be handled by Jenkins
automatically.

http://www.xda-developers.com/
http://android.serverbox.ch/?p=1217

6. Additional Work

To get more Transparency of the
androidSlaves I decided to create a slave
instance for every Android device.
So it appears as a slave itself in the jenkins
environment.

Therefore you must create a slave instance
per android device manually and pass the
slave name, the android device serial and
the jnlp secret via one of the three
androidFarm jobs to the devices.conf file in
order to start a slave if its corresponding
android device is connected. Those jobs
are:

– “add a device”
– “run androidFarm daemon”
– “list devices”

The androidFarm script is able to start a
slave instance via JNLP for every known
device and it shuts down the slave instance
if its corresponding android device is
disconnect. So every android device can be
still used by developers or quality
engineers. Additionally all androidSlave
jobs will first lighten the screen and darken
it again if the build-job ends. So it's even
possible to provide information about
usage of an android device without
accessing Jenkins.

Furthermore I tried to get some feedback of
the slave's status by parsing the node's
overview page. It works but takes so much
time, that I decided to not use it in practice

and only print the feedback of starting a
slave instance to the log file.

All in all I could improve the Android device
handling, so now a test multijob can run on
multiple Android devices simultaneously
and if one device is not connected while
starting the job, its build-job will wait until
this device will be connected again.

It's even possible to create device groups
by using multiple slave labels for each
androidSlave. As an example let's use the
following labels for a Nexus 10:

- android
- android_tablet
- android_Nexus
- android_Nexus_tablet
- android_Nexus_10

Such label handling provides an easy and
effective way of running tests for specific
android device groups like all device, all

tablets, all Nexus devices or one specific
device.

Although this setup could only handle 6
devices on a RaspberryPi (B+ and 2). On a
x64, 4 GB, dual core machine I was able to
launch all seven androidSlaves and run
tests on them. Each androidSlaves
consumes 20 to 45 MB of RAM depending
on the job. To save some storage the
androidFarm Script, which can be found on
github31 creates a soft link to the tools
directory used by the androidFarm instance
to not copy it over and over again from
Jenkins to the slave when creating a
androidSlave. Therefor a specific directory
structure must be set up. This can be read
in the doc at the github project.

I made an unlock screen job, which fires
random UI event to open the lock screen
and then enters the passed pin code to
unlock the lock screen. So it's possible to
run UI tests on the devices without
unlocking them manually.

Finally i've come up with a setup which
let's you handle android devices for
testing. By starting an own slave instance
for every device. All devices are still usable
by employees without crashing Jenkins or a
build-job, such will just wait until the device
is connected again.

I recently found an “android device
connector” plugin, which offers the
possibility to deploy an apk to an android
device connected to any slave or even the
master. I consider to merge my
androidFarm Script functionalities of
running tests to this plugin. But this will be
discussed in a different paper.

31 https://github.com/blobbsen/androidFarm

https://github.com/blobbsen/androidFarm

	Key words
	1. Introduction
	2. Problem
	3. Detailed Work

